Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation.
نویسنده
چکیده
Patterns of neuronal excitation in complex populations can be mapped anatomically by activating ionotropic glutamate receptors in the presence of 1-amino-4-guanidobutane (AGB), a channel-permeant guanidinium analogue. Intracellular AGB signals were trapped with conventional glutaraldehyde fixation and were detected by probing registered serial thin sections with anti-AGB and anti-amino acid immunoglobulins, revealing both the accumulated AGB and the characteristic neurochemical signatures of individual cells. In isolated rabbit retina, both glutamate and the ionotropic glutamate receptor agonists alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA), kainic acid (KA), and N-methyl-D-aspartic acid (NMDA) activated permeation of AGB into retinal neurons in dose-dependent and pharmacologically specific modes. Horizontal cells and bipolar cells were dominated by AMPA/KA receptor activation with little or no evidence of NMDA receptor involvement. Strong NMDA activation of AGB permeation was restricted to subsets of the amacrine and ganglion cell populations. Threshold agonist doses for the most responsive cell groups (AMPA, 300 nm; KA, 2 microM; NMDA, 63 microm; glutamate, 1 mM) were similar to values obtained from electrophysiological and neurotransmitter release measures. The threshold for activation of AGB permeation by exogenous glutamate was shifted to <200 microM in the presence of the glutamate transporter antagonist dihydrokainate, indicating substantial spatial buffering of extracellular glutamate levels in vitro. Agonist-activated permeation of AGB into neurons persisted under blockades of Na+ -dependent transporters, voltage-activated Ca2+ and Na+ channels, and ionotropic gamma-aminobutyric acid and glycine receptors. Cholinergic agonists evoked no permeation.
منابع مشابه
Anomalous Effect of Permeant Ion Concentration on Peak Open Probability of Cardiac Na+ Channels
Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. Decreasing extracellular permeant ion concentration decreases outward Na+ current at positive voltages while increasing the driving force for the current. This anomalous effect of permeant ion concentration, especially obvious in a mutant (F1...
متن کاملMonovalent and divalent cation permeability and block of neuronal nicotinic receptor channels in rat parasympathetic ganglia
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among...
متن کاملExcitation mapping with the organic cation AGB2+
Excitation mapping is a method of visualizing the signaling history of neurons with permeant organic cations. It is compatible with high-resolution imaging, allowing concurrent visualization of all neuronal classes and their glutamate-gated excitation histories. Excitation mapping documents the stability and precision of neuronal signaling within a given neuronal class, arguing that single unit...
متن کاملExcitation mapping with the organic cation AGB
Excitation mapping is a method of visualizing the signaling history of neurons with permeant organic cations. It is compatible with high-resolution imaging, allowing concurrent visualization of all neuronal classes and their glutamate-gated excitation histories. Excitation mapping documents the stability and precision of neuronal signaling within a given neuronal class, arguing that single unit...
متن کاملEvidences for a new cation channel in the brain mitochondrial inner membrane
Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of comparative neurology
دوره 407 1 شماره
صفحات -
تاریخ انتشار 1999